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Low dimensional devices
29.04.2024

O Generals
1 2D devices:
 TMDs photodetectors
1D devices:
* Nanowire solar cells
* Nanowire LEDs
0D devices:
e (QD-LEDs
* Coulomb blockade




Low dimensional materials: key aspects

Quantum confinement Heterostructuring and material integration
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Quantum wells in optoelectronic devices: examples

Quantum cascade lasers (QCLs) Quantum well IR photodetectors
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2D Heterostructures
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Exploiting Lateral HJs: 1L/2L photodetectors

Interdigitated 1L/2L WSe, photodetector
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Exploiting Lateral Hls: 1L/2L photodetectors

Interdigitated 1L/2L WSe, photodetector
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1D nanostructures
or
Nanowires
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Advantages of Nanowires (1)

New phases =
Material engineering

wurtzite lattice in
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Advantages of Nanowires (2)

Enhanced Optical Absorption Light Trapping
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Junctions in Nanowires

AXIAL JUNCTION
a)
Transparent top contact
p n-doped
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Courtesy of

Dr. N. Guan
ADV. DIS.
- Photonic improvement - Surface effects
- Material Stacking - Intermixing
- Easy Fabrication - Junction area = Cross-section

- Easy Modeling
- Easy Contacting



Junctions in Nanowires

RADIAL JUNCTION
(CORE-SHELL)
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Nanowires-based Solar cells (1)
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FIG. 2. Model J-V characteristics for (a) top contact with sidewall passiva-
tion; (b) top contact without sidewall passivation using S=5X10° ¢m s
and D=10'2 cm™2; and (c) sidewall contact with Fermi level pinning at
midgap.

R.R.LaPierre, J. Appl.
Phys. 109, 034311
(2011)



Nanowires-based Solar cells (1)

TABLE II. Summary of solar cell performance.

Ve J.? n*
Type of cell (V) (mA cm™2) FF (%)
(1) Top contact with passivation 0.99 3.23 (21.8) 0.88 2.82 (19.0)
(2) Top contact without passivation 0.86 1.86 (12.5) 0.84 1.34 (9.0)
(3) Sidewall contact 0.49 1.38 (9.3) 0.68 0.46 (3.1)
(4) Top contact with passivation, reduced shell height,
N,=Ny=5x% 10" cm™ 1.04 451 (30.5)  0.89  4.17 (28.1)
(5) p-i-n structure, top contact with passivation, reduced
shell height, N,=N,=5X 10! cm™ 1.04 10.7 (29.6)  0.88  9.81 (27.3)
(6) Record planar GaAs cell® 1.045 29.6 0.85 26.1

“The first quantity outside the brackets is normalized to the substrate area. The second quantity in brackets is
normalized to the wire area and represents the results for perfect light trapping.

PReference 49.

“The J-V characteristic of a nanowire diode is the result of a complicated interplay between

L] .L i ’ L] L] . . . . .
R.R.LaPierre, J. Appl geometry, contact method, doping concentrations, SRV, surface trap density, and thin film effects.
Phys. 109, 034311 N . L . . -

(2011) The variation in Voc with nanowire diameter and change in Jsc with tip length indicates the

importance of a monodisperse distribution in nanowire dimensions.”



Nanowires-based Solar cells (2)

Single junction Solar Cells
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Nanowire Tandem Solar Cells
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Nanowire LEDs
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Localized In accumulation
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Zhang H. et al., Nanotechnology 32 (2021)



Localized In accumulation

(a) bottom ITO contact ITO etch back (c) top part p-GaN etching
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p/n-GaN

Flexible LEDs
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metal foil contact silver NWs
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Zhang H. et al., ACS Applied Materials & Interfaces 8(39) (2016)
Guan N. et al., ACS Photonics 3(4) (2016)
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High Wavelength LEDs
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OD nanostructures
or
Quantum Dots

https://www.asianscientist.com/2018/02/tech/quant
um-dot-led-metal-nanostructure/
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Low dimensional solar cells

Quantum Dot Solar Cell

Anode

— (Glass

Nanowire Solar Cell

Benefits

Multiple exciton generation
Tunable bandgap
Low-temperature fabrication

Challenges
Charge/energy transport through QD array
Manodispersity of QDs

> No continuity

QD kong-term stability

Benefits

Reduction in minority-carrier lifetime
Reduced material usage

Reduced reflectivity

Challenges

Positional stability of dopants
Achiewing high areal density
Top contact

Beard, M., Luther, J. & Nozik, A. The promise and challenge of
nanostructured solar cells. Nature Nanotech 9, 951-954 (2014)

— QDs distribution



What is a Quantum Dot?



Quantum Dot - colloidal synthesis
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PuY. et al., Ind. Eng. Chem. Res., 57, (2018)



Quantum Dot - other syntheses

Spray method Epitaxial method

a Semiconductor
Spray nanoparticies Al Ga DAS ....... - QD
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e il
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vaporization

Electrostatically defined

Bayer M., Ann. Phys.(Berlin) 531, (2019)
PuY. et al., Ind. Eng. Chem. Res., 57, (2018)




Quantum Dot distributions

InP QDs

Diameter between 2 and 10 nm

Nozik et al., MRS Bulletin, (1998)




Quantum Dot distributions

650
Wavelength (nm)

Diameter between 20 and 35 nm

Micic et al., J. of Physical Chemistry, 98(19) (1994)



CdS/CdSe
QDs
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Quantum Dot monodispersion
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Quantum Dot — Nobel prize

The Nobel Prize in Chemistry 2023
- Quantum dots

Department of Physics < News

Moungi G. Bawendi, Louis E. Brus and Alexei |. Ekimov were awarded the
Nobel Prize in Chemistry 2023 for the discovery and development of
quantum dots. These tiny quantum systems have unique properties and
many applications: they emit light used in television screens and LED
lamps, they catalyse chemical reactions, and their emission marks the
borders of tumor tissue for a surgeon. Ana Predojevic, is associate professor
at Fysikum: "We use the best tools and methods available to modern
science to generate quantum light, harness its unique properties, and bring
it closer to real-world application.”
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How to create a QD-LED

5 minutes




How to create a QD-LED

5 minutes




Charge transport in OD systems

i-AlGaAs ZDEG-\ i
(spacer) .
p-AlGaAs™ \ 47

i-AlGaAs
(cap)

Electrostatically defined
Quantum Dot



Coulomb Blockade

Electron

/\ island

The controlling principle is similar to the case of the source /- 0 drain
1D channel. _ v |

The charge transport occurs by tunnelling through an
energy barrier.

gate
VSD

Blockade Single charge tunneling By aligning the chemical potential of the
different elements (contacts, barrier,

charging potential of the QD), it is possible to

At control of the tunnelling by varying the gate
*’z'/ voltage.
Since the energy levels available for the
eV gt e states in the QDs are discrete, electrons flow

one-by one.



Coulomb Blockade

In the system we can observe «Coulomb oscillations»
in the G vs V, plot.

As the gate voltage reaches a value sufficient to enable
tunnelling to an empty energy levels, electrons flows
and the conductance spikes.

The energy required to «store» a single electron into the
2
e
Coulomb blockade device is equal to >C where C is the
capacitance of the quantum dot with respect to the
external environment.
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Conductance of a Quantum Dot

How much is the quantum conductance
of a Coulomb Blockade?

a.
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C.
d.
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To be discussed in class




